Dynamic effects of prognostic factors and individual survival prediction for amyotrophic lateral sclerosis disease
Objective Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons, with broad heterogeneity in disease progression and survival in different patients. Therefore, an accurate prediction model will be crucial to implement timely interventions and prolong patient surv...
Gespeichert in:
Veröffentlicht in: | Annals of Clinical and Translational Neurology 2023-06, Vol.10 (6), p.892-903 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons, with broad heterogeneity in disease progression and survival in different patients. Therefore, an accurate prediction model will be crucial to implement timely interventions and prolong patient survival time.
Methods
A total of 1260 ALS patients from the PRO‐ACT database were included in the analysis. Their demographics, clinical variables, and death reports were included. We constructed an ALS dynamic Cox model through the landmarking approach. The predictive performance of the model at different landmark time points was evaluated by calculating the area under the curve (AUC) and Brier score.
Results
Three baseline covariates and seven time‐dependent covariates were selected to construct the ALS dynamic Cox model. For better prognostic analysis, this model identified dynamic effects of treatment, albumin, creatinine, calcium, hematocrit, and hemoglobin. Its prediction performance (at all landmark time points, AUC ≥ 0.70 and Brier score ≤ 0.12) was better than that of the traditional Cox model, and it predicted the dynamic 6‐month survival probability according to the longitudinal information of individual patients.
Interpretation
We developed an ALS dynamic Cox model with ALS longitudinal clinical trial datasets as the inputs. This model can not only capture the dynamic prognostic effect of both baseline and longitudinal covariates but also make individual survival predictions in real time, which are valuable for improving the prognosis of ALS patients and providing a reference for clinicians to make clinical decisions. |
---|---|
ISSN: | 2328-9503 2328-9503 |
DOI: | 10.1002/acn3.51771 |