Drug repurposing as an alternative for the treatment of recalcitrant bacterial infections
Bacterial infection remains one of the leading causes of death worldwide, and the options for treating such infections are decreasing, due the rise of antibiotic-resistant bacteria. The pharmaceutical industry has produced few new types of antibiotics in more than a decade. Researchers are taking se...
Gespeichert in:
Veröffentlicht in: | Frontiers in microbiology 2015-04, Vol.6, p.282-282 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bacterial infection remains one of the leading causes of death worldwide, and the options for treating such infections are decreasing, due the rise of antibiotic-resistant bacteria. The pharmaceutical industry has produced few new types of antibiotics in more than a decade. Researchers are taking several approaches toward developing new classes of antibiotics, including (1) focusing on new targets and processes, such as bacterial cell-cell communication that upregulates virulence; (2) designing inhibitors of bacterial resistance, such as blockers of multidrug efflux pumps; and (3) using alternative antimicrobials such as bacteriophages. In addition, the strategy of finding new uses for existing drugs is beginning to produce results: antibacterial properties have been discovered for existing anticancer, antifungal, anthelmintic, and anti-inflammatory drugs. In this review, we discuss the antimicrobial properties of gallium compounds, 5-fluorouracil, ciclopirox, diflunisal, and some other FDA-approved drugs and argue that their repurposing for the treatment of bacterial infections, including those that are multidrug resistant, is a feasible strategy. |
---|---|
ISSN: | 1664-302X 1664-302X |
DOI: | 10.3389/fmicb.2015.00282 |