Supercritical Fluid Microcellular Foaming of High-Hardness TPU via a Pressure-Quenching Process: Restricted Foam Expansion Controlled by Matrix Modulus and Thermal Degradation

High-hardness thermoplastic polyurethane (HD-TPU) presents a high matrix modulus, low-temperature durability, and remarkable abrasion resistance, and has been used in many advanced applications. However, the fabrication of microcellular HD-TPU foam is rarely reported in the literature. In this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2022-12, Vol.27 (24), p.8911
Hauptverfasser: Chen, Bichi, Jiang, Junjie, Li, Yaozong, Zhou, Mengnan, Wang, Zelin, Wang, Liang, Zhai, Wentao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-hardness thermoplastic polyurethane (HD-TPU) presents a high matrix modulus, low-temperature durability, and remarkable abrasion resistance, and has been used in many advanced applications. However, the fabrication of microcellular HD-TPU foam is rarely reported in the literature. In this study, the foaming behavior of HD-TPU with a hardness of 75D was investigated via a pressure-quenching foaming process using CO as a blowing agent. Microcellular HD-TPU foam with a maximum expansion ratio of 3.9-fold, a cell size of 25.9 μm, and cell density of 7.8 × 10 cells/cm was prepared, where a high optimum foaming temperature of about 170 °C had to be applied with the aim of softening the polymer's matrix modulus. However, the foaming behavior of HD-TPU deteriorated when the foaming temperature further increased to 180 °C, characterized by the presence of coalesced cells, microcracks, and a high foam density of 1.0 g/cm even though the crystal domains still existed within the matrix. The cell morphology evolution of HD-TPU foam was investigated by adjusting the saturation time, and an obvious degradation occurred during the high-temperature saturation process. A cell growth mechanism of HD-TPU foams in degradation environments was proposed to explain this phenomenon based on the gas escape through the defective matrix.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27248911