Accelerating the simulation of annual bifacial illumination of real photovoltaic systems with ray tracing

Accurate modeling of bifacial illumination is critical to improve the prediction of the energy yield of bifacial solar systems. Monte Carlo ray tracing is the most powerful tool to accomplish this task. In this work, we accelerate Monte Carlo ray tracing of large solar systems by nearly 90%. Our mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:iScience 2022-01, Vol.25 (1), p.103698-103698, Article 103698
Hauptverfasser: Ernst, Marco, Conechado, Georgia E.J., Asselineau, Charles-Alexis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate modeling of bifacial illumination is critical to improve the prediction of the energy yield of bifacial solar systems. Monte Carlo ray tracing is the most powerful tool to accomplish this task. In this work, we accelerate Monte Carlo ray tracing of large solar systems by nearly 90%. Our model achieves root-mean-square error values of 7.9% and 37.2% for the front and rear irradiance compared against single-axis tracking field reference data, respectively. The rear irradiance modeling error decreases to 18.9% if suspected snow periods are excluded. Crucially, our full system simulations show that surrounding ground surfaces affect the rear irradiance deep into the system. Therefore, unit system simulations cannot necessarily ignore the influence of the perimeter of large installations to accurately estimate annual yield. Large-scale simulations involving high-performance supercomputing were necessary to investigate these effects accurately, calibrate our simplified models, and validate our results against experimental measurements. [Display omitted] •Modeling bifacial illumination of full photovoltaic systems using ray tracing•Acceleration strategies reduce heavy ray tracing requirements by nearly 90%•Surrounding ground affects bifacial illumination deep into the system•Simulated annual rear illumination estimation error below 6.5% Solar terrestrial physics; Engineering
ISSN:2589-0042
2589-0042
DOI:10.1016/j.isci.2021.103698