Recent advances in CRISPR-Cas9-based genome insertion technologies

Programmable genome insertion (or knock-in) is vital for both fundamental and translational research. The continuously expanding number of CRISPR-based genome insertion strategies demonstrates the ongoing development in this field. Common methods for site-specific genome insertion rely on cellular d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy. Nucleic acids 2024-03, Vol.35 (1), p.102138-102138, Article 102138
Hauptverfasser: Chen, Xinwen, Du, Jingjing, Yun, Shaowei, Xue, Chaoyou, Yao, Yao, Rao, Shuquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Programmable genome insertion (or knock-in) is vital for both fundamental and translational research. The continuously expanding number of CRISPR-based genome insertion strategies demonstrates the ongoing development in this field. Common methods for site-specific genome insertion rely on cellular double-strand breaks repair pathways, such as homology-directed repair, non-homologous end-joining, and microhomology-mediated end joining. Recent advancements have further expanded the toolbox of programmable genome insertion techniques, including prime editing, integrase coupled with programmable nuclease, and CRISPR-associated transposon. These tools possess their own capabilities and limitations, promoting tremendous efforts to enhance editing efficiency, broaden targeting scope and improve editing specificity. In this review, we first summarize recent advances in programmable genome insertion techniques. We then elaborate on the cons and pros of each technique to assist researchers in making informed choices when using these tools. Finally, we identify opportunities for future improvements and applications in basic research and therapeutics. [Display omitted] Rao and colleagues summarize the recent efforts to improve both efficiency and specificity of genome insertion technologies, highlight their capabilities and limitations, discuss their applications in biological research and translational medicine, and conclude with future directions to overcome existing bottlenecks.
ISSN:2162-2531
2162-2531
DOI:10.1016/j.omtn.2024.102138