Hepatitis B virus X protein and hepatitis C virus core protein cooperate to repress E-cadherin expression via DNA methylation
Dual infection of hepatitis B virus (HBV) and hepatitis C virus (HCV) is closely associated with an increased risk of hepatocellular carcinoma; however, the underlying mechanism is poorly understood. In the present study, we found that HBV X protein (HBx) and HCV core protein work together to inhibi...
Gespeichert in:
Veröffentlicht in: | Heliyon 2022-07, Vol.8 (7), p.e09881-e09881, Article e09881 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dual infection of hepatitis B virus (HBV) and hepatitis C virus (HCV) is closely associated with an increased risk of hepatocellular carcinoma; however, the underlying mechanism is poorly understood. In the present study, we found that HBV X protein (HBx) and HCV core protein work together to inhibit E-cadherin expression in human hepatoma cells. For this effect, they additively increased both the level and activity of enzymes, DNA methyltransferase 1, 3a, and 3b to induce promoter hypermethylation of E-cadherin in a p53-dependent fashion. Their additive effect on E-cadherin levels was reproduced in an in vitro HBV/HCV dual infection system using Huh7D-NTCP cells. As a result, HBV and HCV additively upregulated mesenchymal marker such as N-cadherin, Snail, Twist and Vimentin but cooperatively downregulated epithelial markers such as E-cadherin, Slug and Plakoglobin. In addition, the coinfected cells exhibited faster cell migration and higher invasion ability, as compared with monoinfection, which are hallmarks of epithelial-mesenchymal transition required for the initiation of metastasis in cancer progression.
DNA methyltransferases, E-cadherin, Epithelial-mesenchymal transition, Hepatitis B virus X protein, Hepatitis C virus core protein, Hepatocellular carcinoma, p53. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2022.e09881 |