ZnO nanonails for photocatalytic degradation of crystal violet dye under UV irradiation

In this study, nanonails-like zinc oxide (ZnO) nanostructures were synthesized in large quantity by thermal evaporation technique and further characterized in detail using different techniques such as field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS materials science 2017-01, Vol.4 (1), p.267-276
Hauptverfasser: Tripathy, Nirmalya, Ahmad, Rafiq, Eun Song, Jeong, Park, Hyun, Khang, Gilson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, nanonails-like zinc oxide (ZnO) nanostructures were synthesized in large quantity by thermal evaporation technique and further characterized in detail using different techniques such as field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD), UV-visible spectroscopy, photoluminescence (PL) spectroscopy, and Raman spectroscopy. Morphological characterizations revealed that the as-synthesized nanostructures possess nail-like geometry, grown in large quantity. The XRD, UV-visible absorbance spectra, PL, and Raman spectra confirms good crystallinity and optical property of as-synthesized ZnO nanonails. The photocatalytic activities of designed nanostructures for crystal violet dye (CV-dye) degradation was evaluated under UV illumination and monitored by UV-vis spectroscopy at different time intervals until the dye was completely degraded to colorless end product. A fast decomposition was observed with ~95% degradation rate within the initial 70 min, which is attributed to high specific surface area (56.8 m2/g), high crystallinity and better optical property of ZnO nanonails.
ISSN:2372-0484
DOI:10.3934/matersci.2017.1.267