Synthetic Genetic Interaction (CRISPR-SGI) Profiling in Caenorhabditis elegans

Genetic interaction screens are a powerful methodology to establish novel roles for genes and elucidate functional connections between genes. Such studies have been performed to great effect in single-cell organisms such as yeast and (Schuldiner ., 2005; Butland ., 2008; Costanzo ., 2010), but simil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bio-protocol 2018-03, Vol.8 (5)
Hauptverfasser: Calarco, John A, Norris, Adam D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genetic interaction screens are a powerful methodology to establish novel roles for genes and elucidate functional connections between genes. Such studies have been performed to great effect in single-cell organisms such as yeast and (Schuldiner ., 2005; Butland ., 2008; Costanzo ., 2010), but similar large-scale interaction studies using targeted reverse-genetic deletions in multi-cellular organisms have not been feasible. We developed a CRISPR/Cas9-based method for deleting genes in and replacing them with a heterologous fluorescent reporter (Norris ., 2015). Recently we took advantage of that system to perform a large-scale, reverse genetic screen using null alleles in animals for the first time, focusing on RNA binding protein genes (Norris ., 2017). This type of approach should be similarly applicable to many other gene classes in . Here we detail the protocols involved in generating a library of double mutants and performing medium-throughput competitive fitness assays to test for genetic interactions resulting in fitness changes.
ISSN:2331-8325
2331-8325
DOI:10.21769/BioProtoc.2756