An intelligent deep convolutional network based COVID-19 detection from chest X-rays
Coronavirus disease-2019 (COVID-19) seems to be a fast spreading contagious illness that affects both humans and animals. This catastrophic deadly virus has an impact on people's daily lives, their wellbeing, and a nation's economy. According to a clinical research of COVID-19 affected pat...
Gespeichert in:
Veröffentlicht in: | Alexandria engineering journal 2023-02, Vol.64, p.399-417 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coronavirus disease-2019 (COVID-19) seems to be a fast spreading contagious illness that affects both humans and animals. This catastrophic deadly virus has an impact on people's daily lives, their wellbeing, and a nation's economy. According to a clinical research of COVID-19 affected patients, these individuals have been most commonly infected with a lung illness after coming into touch with the virus. A chest X-ray (also known as radiography) or a chest CT scan seems to be more efficient imaging techniques for detecting lung issues. Nonetheless, when compared to a chest CT, a significant chest X-ray remains a less expensive procedure. Thus, in this research, a novel Deep convolution neural network algorithm is presented to detect the COVID-19 from X-ray image. Moreover, to enhance diagnostics sensitivity and reduce error rate, a hybrid Two-step-AS clustering approach with Ensemble Bootstrap aggregating training and Multiple NN methods used. In addition, TSEBANN model has been employed to explore the qualification procedure effects. The proposed algorithm was trained before and after classification while compared to traditional Convolutional Neural Network (CNN). After, the process of pre-processing and feature extraction, the CNN strategy was adopted as an identification approach to categorize the information depending on Chest X-ray recognition. These examples were then classified using the CNN classification technique. The testing was conducted on the COVID-19 X-ray dataset, and the cross-validation approach was used to determine the model’s validity. The result indicated that a CNN system classification has attained an accuracy of 98.062 %. |
---|---|
ISSN: | 1110-0168 1110-0168 |
DOI: | 10.1016/j.aej.2022.09.016 |