A class of hypersurfaces in $ \mathbb{E}^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda\vec{H}
A nondegenerate hypersurface in a pseudo-Euclidean space $ \mathbb{E}^{n+1}_{s} $ is called to have proper mean curvature vector if its mean curvature $ \vec{H} $ satisfies $ \Delta \vec{H} = \lambda \vec{H} $ for a constant $ \lambda $. In 2013, Arvanitoyeorgos and Kaimakamis conjectured [1 ] : any...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2022, Vol.7 (1), p.39-53 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A nondegenerate hypersurface in a pseudo-Euclidean space $ \mathbb{E}^{n+1}_{s} $ is called to have proper mean curvature vector if its mean curvature $ \vec{H} $ satisfies $ \Delta \vec{H} = \lambda \vec{H} $ for a constant $ \lambda $. In 2013, Arvanitoyeorgos and Kaimakamis conjectured [1 ] : any hypersurface satisfying $ \Delta \vec{H} = \lambda \vec{H} $ in pseudo-Euclidean space $ \mathbb E_{s}^{n+1} $ has constant mean curvature. This paper will give further support evidences to this conjecture by proving that a linear Weingarten hypersurface $ M^{n}_{r} $ in $ \mathbb E^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda \vec{H} $ has constant mean curvature if $ M^{n}_{r} $ has diagonalizable shape operator with less than seven distinct principal curvatures. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2022003 |