On Fractional Derivatives and Application

In many instances, the first derivative of the functional representation f(x) will fail to exist (Mandelbrot, 1987). When this happens, it is important to develop an appropriate language to describe these minute finer roughness and irregularities of the geometric objects. This paper attempts to deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Recoletos multidisciplinary research journal 2013-12, Vol.1 (2), p.51-56
Hauptverfasser: Borres, Mark, Barabat, Efren, Panduyos, Jocelyn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In many instances, the first derivative of the functional representation f(x) will fail to exist (Mandelbrot, 1987). When this happens, it is important to develop an appropriate language to describe these minute finer roughness and irregularities of the geometric objects. This paper attempts to develop the calculus of fractional derivatives for this purpose. Local approximations to functional values by fractional derivatives provide finer and better estimate than the global approximations represented by power series e.g Mclaurin’s series. Fractional derivatives incorporate information on the fluctuations and irregularities near the true functional values, hence, attaining greater precision.
ISSN:2423-1398
2408-3755
DOI:10.32871/rmrj1301.02.06