Real-Time Instance Segmentation of Traffic Videos for Embedded Devices
The paper proposes a novel instance segmentation method for traffic videos devised for deployment on real-time embedded devices. A novel neural network architecture is proposed using a multi-resolution feature extraction backbone and improved network designs for the object detection and instance seg...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2021-01, Vol.21 (1), p.275 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper proposes a novel instance segmentation method for traffic videos devised for deployment on real-time embedded devices. A novel neural network architecture is proposed using a multi-resolution feature extraction backbone and improved network designs for the object detection and instance segmentation branches. A novel post-processing method is introduced to ensure a reduced rate of false detection by evaluating the quality of the output masks. An improved network training procedure is proposed based on a novel label assignment algorithm. An ablation study on speed-vs.-performance trade-off further modifies the two branches and replaces the conventional ResNet-based performance-oriented backbone with a lightweight speed-oriented design. The proposed architectural variations achieve real-time performance when deployed on embedded devices. The experimental results demonstrate that the proposed instance segmentation method for traffic videos outperforms the you only look at coefficients algorithm, the state-of-the-art real-time instance segmentation method. The proposed architecture achieves qualitative results with 31.57 average precision on the COCO dataset, while its speed-oriented variations achieve speeds of up to 66.25 frames per second on the Jetson AGX Xavier module. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s21010275 |