Exploring Canine Picornavirus Diversity in the USA Using Wastewater Surveillance: From High-Throughput Genomic Sequencing to Immuno-Informatics and Capsid Structure Modeling

The SARS-CoV-2 pandemic resulted in a scale-up of viral genomic surveillance globally. However, the wet lab constraints (economic, infrastructural, and personnel) of translating novel virus variant sequence information to meaningful immunological and structural insights that are valuable for the dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Viruses 2024-07, Vol.16 (8), p.1188
Hauptverfasser: Faleye, Temitope O C, Skidmore, Peter, Elyaderani, Amir, Adhikari, Sangeet, Kaiser, Nicole, Smith, Abriana, Yanez, Allan, Perleberg, Tyler, Driver, Erin M, Halden, Rolf U, Varsani, Arvind, Scotch, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The SARS-CoV-2 pandemic resulted in a scale-up of viral genomic surveillance globally. However, the wet lab constraints (economic, infrastructural, and personnel) of translating novel virus variant sequence information to meaningful immunological and structural insights that are valuable for the development of broadly acting countermeasures (especially for emerging and re-emerging viruses) remain a challenge in many resource-limited settings. Here, we describe a workflow that couples wastewater surveillance, high-throughput sequencing, phylogenetics, immuno-informatics, and virus capsid structure modeling for the genotype-to-serotype characterization of uncultivated picornavirus sequences identified in wastewater. Specifically, we analyzed canine picornaviruses (CanPVs), which are uncultivated and yet-to-be-assigned members of the family that cause systemic infections in canines. We analyzed 118 archived (stored at -20 °C) wastewater (WW) samples representing a population of ~700,000 persons in southwest USA between October 2019 to March 2020 and October 2020 to March 2021. Samples were pooled into 12 two-liter volumes by month, partitioned (into filter-trapped solids [FTSs] and filtrates) using 450 nm membrane filters, and subsequently concentrated to 2 mL (1000×) using 10,000 Da MW cutoff centrifugal filters. The 24 concentrates were subjected to RNA extraction, CanPV complete capsid single-contig RT-PCR, Illumina sequencing, phylogenetics, immuno-informatics, and structure prediction. We detected CanPVs in 58.3% (14/24) of the samples generated 13,824,046 trimmed Illumina reads and 27 CanPV contigs. Phylogenetic and pairwise identity analyses showed eight CanPV genotypes (intragenotype divergence
ISSN:1999-4915
1999-4915
DOI:10.3390/v16081188