Study on detoxification property of alkaline-modified MoO42--H2O2 decontaminants against PhSMe under subzero environment
The decontaminant activated by MoO42- (MoO42--H2O2) suitable for subzero environment shows strong oxidizing ability and weak nucleophilicity due to its acid. In this paper, in order to improve nucleophilicity and retain oxidation of MoO42--H2O2 as far as possible, NH3 and NaOH were used as alkaline...
Gespeichert in:
Veröffentlicht in: | E3S web of conferences 2021-01, Vol.267, p.02061 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The decontaminant activated by MoO42- (MoO42--H2O2) suitable for subzero environment shows strong oxidizing ability and weak nucleophilicity due to its acid. In this paper, in order to improve nucleophilicity and retain oxidation of MoO42--H2O2 as far as possible, NH3 and NaOH were used as alkaline modifiers, and PhSMe was used as a simulant of HD to study the oxidation rate and products of sulfides by alkaline-modified MoO42--H2O2 below zero. Results showed that the reaction rate constants decreased with the increase of pH in both NH3 and NaOH modified MoO42--H2O2 at -20°C, and the relative ratio of sulfone to sulfoxide increased especially at pH>9. The reaction activation energy Ea of PhSMe oxidation in the alkaline-modified MoO42--H2O2 decontaminants was lower than that in the MoO42--H2O2 decontaminant, which indicated that the sensitivity of the oxidation reaction rate to temperature in MoO42--H2O2 was reduced after modification. |
---|---|
ISSN: | 2555-0403 2267-1242 |
DOI: | 10.1051/e3sconf/202126702061 |