Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory
Aging is accompanied by impairments in both circadian rhythmicity and long-term memory. Although it is clear that memory performance is affected by circadian cycling, it is unknown whether age-related disruption of the circadian clock causes impaired hippocampal memory. Here, we show that the repres...
Gespeichert in:
Veröffentlicht in: | Nature communications 2018-08, Vol.9 (1), p.3323-14, Article 3323 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aging is accompanied by impairments in both circadian rhythmicity and long-term memory. Although it is clear that memory performance is affected by circadian cycling, it is unknown whether age-related disruption of the circadian clock causes impaired hippocampal memory. Here, we show that the repressive histone deacetylase HDAC3 restricts long-term memory, synaptic plasticity, and experience-induced expression of the circadian gene
Per1
in the aging hippocampus without affecting rhythmic circadian activity patterns. We also demonstrate that hippocampal
Per1
is critical for long-term memory formation. Together, our data challenge the traditional idea that alterations in the core circadian clock drive circadian-related changes in memory formation and instead argue for a more autonomous role for circadian clock gene function in hippocampal cells to gate the likelihood of long-term memory formation.
Circadian rhythms are known to modulate memory, but it’s not known whether clock genes in the hippocampus are required for memory consolidation. Here, the authors show that epigenetic regulation of clock gene Period1 in the hippocampus regulates memory and contributes to age-related memory decline, independent of circadian rhythms. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-018-05868-0 |