Finding Misclassified Natura 2000 Habitats by Applying Outlier Detection to Sentinel-1 and Sentinel-2 Data

The monitoring of Natura 2000 habitats (Habitat Directive 92/43/EEC) is a key activity ensuring the sufficient protection of European biodiversity. Reporting on the status of Natura 2000 habitats is required every 6 years. Although field mapping is still an indispensable source of data on the status...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2023-09, Vol.15 (18), p.4409
Hauptverfasser: Moravec, David, Barták, Vojtěch, Šímová, Petra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The monitoring of Natura 2000 habitats (Habitat Directive 92/43/EEC) is a key activity ensuring the sufficient protection of European biodiversity. Reporting on the status of Natura 2000 habitats is required every 6 years. Although field mapping is still an indispensable source of data on the status of Natura 2000 habitats, and very good field-based data exist in some countries, keeping the field-based habitat maps up to date can be an issue. Remote sensing techniques represent an excellent alternative. Here, we present a new method for detecting habitats that were likely misclassified during the field mapping or that have changed since then. The method identifies the possible habitat mapping errors as the so-called “attribute outliers”, i.e., outlying observations in the feature space of all relevant (spectral and other) characteristics of an individual habitat patch. We used the Czech Natura 2000 Habitat Layer as field-based habitat data. To prepare the feature space of habitat characteristics, we used a fusion of Sentinel-1 and Sentinel-2 satellite data along with a Digital Elevation Model. We compared outlier ratings using the robust Mahalanobis distance and Local Outlier Factor using three different thresholds (Tukey rule, histogram-based Scott’s rule, and 95% quantiles in χ2 distribution). The Mahalanobis distance thresholded by the 95% χ2 quantile achieved the best results, and, because of its high specificity, appeared as a promising tool for identifying erroneously mapped or changed habitats. The presented method can, therefore, be used as a guide to target field updates of Natura 2000 habitat maps or for other habitat/land cover mapping activities where the detection of misclassifications or changes is needed.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15184409