Two new results about quantum exact learning
We present two new results about exact learning by quantum computers. First, we show how to exactly learn a k -Fourier-sparse n -bit Boolean function from O ( k 1.5 ( log k ) 2 ) uniform quantum examples for that function. This improves over the bound of Θ ~ ( k n ) uniformly random c l a s s i c...
Gespeichert in:
Veröffentlicht in: | Quantum (Vienna, Austria) Austria), 2021-11, Vol.5, p.587, Article 587 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present two new results about exact learning by quantum computers. First, we show how to exactly learn a
k
-Fourier-sparse
n
-bit Boolean function from
O
(
k
1.5
(
log
k
)
2
)
uniform quantum examples for that function. This improves over the bound of
Θ
~
(
k
n
)
uniformly random
c
l
a
s
s
i
c
a
l
examples (Haviv and Regev, CCC'15). Additionally, we provide a possible direction to improve our
O
~
(
k
1.5
)
upper bound by proving an improvement of Chang's lemma for
k
-Fourier-sparse Boolean functions. Second, we show that if a concept class
C
can be exactly learned using
Q
quantum membership queries, then it can also be learned using
O
(
Q
2
log
Q
log
|
C
|
)
c
l
a
s
s
i
c
a
l
membership queries. This improves the previous-best simulation result (Servedio and Gortler, SICOMP'04) by a
log
Q
-factor. |
---|---|
ISSN: | 2521-327X 2521-327X |
DOI: | 10.22331/q-2021-11-24-587 |