Ordering non-bipartite unicyclic graphs with pendant vertices by the least Q-eigenvalue
A unicyclic graph is a connected graph whose number of edges is equal to the number of vertices. Fan et al. (Discrete Math. 313:903-909, 2013 ) and Liu et al. (Electron. J. Linear Algebra 26:333-344, 2013 ) determined, independently, the unique unicyclic graph whose least Q -eigenvalue attains the m...
Gespeichert in:
Veröffentlicht in: | Journal of inequalities and applications 2016-05, Vol.2016 (1), p.1-11, Article 136 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A unicyclic graph is a connected graph whose number of edges is equal to the number of vertices. Fan
et al.
(Discrete Math. 313:903-909,
2013
) and Liu
et al.
(Electron. J. Linear Algebra 26:333-344,
2013
) determined, independently, the unique unicyclic graph whose least
Q
-eigenvalue attains the minimum among all non-bipartite unicyclic graphs of order
n
with
k
pendant vertices. In this paper, we extend their results and determine the first three non-bipartite unicyclic graphs of order
n
with
k
pendant vertices ordering by least
Q
-eigenvalue. |
---|---|
ISSN: | 1029-242X 1025-5834 1029-242X |
DOI: | 10.1186/s13660-016-1077-1 |