Short‐term grazing reduced community stability by decreasing community‐wide asynchrony and dominant species stability
The effects of grazing on natural grasslands' plant composition, diversity, and productivity depend on the intensity of grazing. Besides grazing intensity, animal composition is also important. However, whether and how sheep grazing intensity affects the temporal biomass stability of plant comm...
Gespeichert in:
Veröffentlicht in: | Ecosphere 2024-07, Vol.15 (7), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of grazing on natural grasslands' plant composition, diversity, and productivity depend on the intensity of grazing. Besides grazing intensity, animal composition is also important. However, whether and how sheep grazing intensity affects the temporal biomass stability of plant communities is unclear. Here, we conducted a 5‐year grazing experiment to evaluate the effects of four grazing intensities on community biomass stability and the underlying mechanisms. Our results showed that the higher grazing intensity significantly decreased community biomass stability, community‐wide asynchrony, functional groups asynchrony, dominant species stability, and species dominance, but did not affect species richness. The results of structural equation modeling revealed that grazing decreased community biomass stability by decreasing dominant species stability and community‐wide asynchrony, which was attributable to the reduction in plant functional group asynchrony. Our results highlight the importance of functional group composition and dynamics in predicting the changes in community function in sheep grazing grassland ecosystems. Under continuous seasonal grazing conditions, the sustainable function and human services of grasslands in the agropastoral ecotone might decrease in the future. |
---|---|
ISSN: | 2150-8925 2150-8925 |
DOI: | 10.1002/ecs2.4872 |