Light- and bias-induced structural variations in metal halide perovskites

Organic–inorganic metal halide perovskites have gained considerable attention for next-generation photovoltaic cells due to rapid improvement in power conversion efficiencies. However, fundamental understanding of underlying mechanisms related to light- and bias-induced effects at the nanoscale is s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-01, Vol.10 (1), p.444-444, Article 444
Hauptverfasser: Kim, Dohyung, Yun, Jae Sung, Sharma, Pankaj, Lee, Da Seul, Kim, Jincheol, Soufiani, Arman M., Huang, Shujuan, Green, Martin A., Ho-Baillie, Anita W. Y., Seidel, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organic–inorganic metal halide perovskites have gained considerable attention for next-generation photovoltaic cells due to rapid improvement in power conversion efficiencies. However, fundamental understanding of underlying mechanisms related to light- and bias-induced effects at the nanoscale is still required. Here, structural variations of the perovskites induced by light and bias are systematically investigated using scanning probe microscopy techniques. We show that periodically striped ferroelastic domains, spacing between 40 to 350 nm, exist within grains and can be modulated significantly under illumination as well as by electric bias. Williamson-Hall analysis of X-ray diffraction results shows that strain disorder is induced by these applied external stimuli. We show evidence that the structural emergence of domains can provide transfer pathways for holes to a hole transport layer with positive bias. Our findings point to potential origins of I – V hysteresis in halide perovskite solar cells. Organic–inorganic metal halide perovskite solar cells have been under the spotlight but what happens in the working solar cell device at the nanoscale remains elusive. Here Kim et al. show that light and voltage bias can induce strain and structural variation which may cause J – V scan hysteresis.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-08364-1