Local imperceptible adversarial attacks against human pose estimation networks

Deep neural networks are vulnerable to attacks from adversarial inputs. Corresponding attack research on human pose estimation (HPE), particularly for body joint detection, has been largely unexplored. Transferring classification-based attack methods to body joint regression tasks is not straightfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Visual computing for industry, biomedicine and art biomedicine and art, 2023-11, Vol.6 (1), p.22-22, Article 22
Hauptverfasser: Liu, Fuchang, Zhang, Shen, Wang, Hao, Yan, Caiping, Miao, Yongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep neural networks are vulnerable to attacks from adversarial inputs. Corresponding attack research on human pose estimation (HPE), particularly for body joint detection, has been largely unexplored. Transferring classification-based attack methods to body joint regression tasks is not straightforward. Another issue is that the attack effectiveness and imperceptibility contradict each other. To solve these issues, we propose local imperceptible attacks on HPE networks. In particular, we reformulate imperceptible attacks on body joint regression into a constrained maximum allowable attack. Furthermore, we approximate the solution using iterative gradient-based strength refinement and greedy-based pixel selection. Our method crafts effective perceptual adversarial attacks that consider both human perception and attack effectiveness. We conducted a series of imperceptible attacks against state-of-the-art HPE methods, including HigherHRNet, DEKR, and ViTPose. The experimental results demonstrate that the proposed method achieves excellent imperceptibility while maintaining attack effectiveness by significantly reducing the number of perturbed pixels. Approximately 4% of the pixels can achieve sufficient attacks on HPE.
ISSN:2524-4442
2524-4442
DOI:10.1186/s42492-023-00148-1