Predicting clinical benefit of immunotherapy by antigenic or functional mutations affecting tumour immunogenicity

Neoantigen burden is regarded as a fundamental determinant of response to immunotherapy. However, its predictive value remains in question because some tumours with high neoantigen load show resistance. Here, we investigate our patient cohort together with a public cohort by our algorithms for the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-02, Vol.11 (1), p.951-951, Article 951
Hauptverfasser: Kim, Kwoneel, Kim, Hong Sook, Kim, Jeong Yeon, Jung, Hyunchul, Sun, Jong-Mu, Ahn, Jin Seok, Ahn, Myung-Ju, Park, Keunchil, Lee, Se-Hoon, Choi, Jung Kyoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neoantigen burden is regarded as a fundamental determinant of response to immunotherapy. However, its predictive value remains in question because some tumours with high neoantigen load show resistance. Here, we investigate our patient cohort together with a public cohort by our algorithms for the modelling of peptide-MHC binding and inter-cohort genomic prediction of therapeutic resistance. We first attempt to predict MHC-binding peptides at high accuracy with convolutional neural networks. Our prediction outperforms previous methods in > 70% of test cases. We then develop a classifier that can predict resistance from functional mutations. The predictive genes are involved in immune response and EGFR signalling, whereas their mutation patterns reflect positive selection. When integrated with our neoantigen profiling, these anti-immunogenic mutations reveal higher predictive power than known resistance factors. Our results suggest that the clinical benefit of immunotherapy can be determined by neoantigens that induce immunity and functional mutations that facilitate immune evasion. Predicting response to cancer immunotherapy is still a challenge. Here, the authors show that their method of predicting MHC-binding peptides, combined with profiling anti-immunogenic mutations, can better predict the clinical benefit of immunotherapy.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-14562-z