On Resolvability Parameters of Some Wheel-Related Graphs

Let G=V,E be a simple connected graph, w∈V be a vertex, and e=uv∈E be an edge. The distance between the vertex w and edge e is given by de,w=mindw,u,dw,v, A vertex w distinguishes two edges e1, e2∈E if dw,e1≠dw,e2. A set S is said to be resolving if every pair of edges of G is distinguished by some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemistry 2019, Vol.2019 (2019), p.1-9
Hauptverfasser: Ahmad, Sarfraz, Siddiqui, Hafiz Muhammad Afzal, Rafiullah, Muhammad, Yang, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G=V,E be a simple connected graph, w∈V be a vertex, and e=uv∈E be an edge. The distance between the vertex w and edge e is given by de,w=mindw,u,dw,v, A vertex w distinguishes two edges e1, e2∈E if dw,e1≠dw,e2. A set S is said to be resolving if every pair of edges of G is distinguished by some vertices of S. A resolving set with minimum cardinality is the basis for G, and this cardinality is the edge metric dimension of G, denoted by edimG. It has already been proved that the edge metric dimension is an NP-hard problem. The main objective of this article is to study the edge metric dimension of some families of wheel-related graphs and prove that these families have unbounded edge metric dimension. Moreover, the results are compared with the metric dimension of these graphs.
ISSN:2090-9063
2090-9071
DOI:10.1155/2019/9259032