A comparison of MLT wind between meteor radar chain data and SD- WACCM results

A meteor radar chain located along the 120°E meridian in the Northern Hemisphere from low to middle latitudes provides long-term horizontal wind observations of the mesosphere and lower thermosphere (MLT) region. In this study, we report a seasonal variation and its latitudinal feature in the horizo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth and planetary physics 2022-09, Vol.6 (5), p.451-464
Hauptverfasser: BaoZhu Zhou, XiangHui Xue, Wen Yi, HaiLun Ye, Jie Zeng, JinSong Chen, JianFei Wu, TingDi Chen, XianKang Dou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A meteor radar chain located along the 120°E meridian in the Northern Hemisphere from low to middle latitudes provides long-term horizontal wind observations of the mesosphere and lower thermosphere (MLT) region. In this study, we report a seasonal variation and its latitudinal feature in the horizontal mean wind in the MLT region observed by six meteor radar instruments located at Mohe (53.5° N, 122.3°E), Beijing (40.3°N, 116.2°E), Mengcheng (33.4°N, 116.5°E), Wuhan (30.6°N, 114.4°E), Kunming (25.6°N, 108.3°E), and Fuke (19.5°N, 109.1°E) stations. In addition, we compare the wind in the MLT region measured by the meteor radar stations with those simulated by the Whole Atmosphere Community Climate Model (WACCM). In general, the WACCM appears to capture well the seasonal and latitudinal variations in the zonal wind component. In particular, the temporal evolution of the eastward zonal wind maximum shifts from July to May as the latitude decreases. However, the simulated WACCM meridional wind exhibits differences from the meteor radar observations.
ISSN:2096-3955
2096-3955
DOI:10.26464/epp2022040