Signaling mechanism by the Staphylococcus aureus two-component system LytSR: role of acetyl phosphate in bypassing the cell membrane electrical potential sensor LytS [version 2; peer review: 2 approved]
The two-component system LytSR has been linked to the signal transduction of cell membrane electrical potential perturbation and is involved in the adaptation of Staphylococcus aureus to cationic antimicrobial peptides. It consists of a membrane-bound histidine kinase, LytS, which belongs to the fam...
Gespeichert in:
Veröffentlicht in: | F1000 research 2015-01, Vol.4, p.79 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The two-component system LytSR has been linked to the signal transduction of cell membrane electrical potential perturbation and is involved in the adaptation of
Staphylococcus aureus to cationic antimicrobial peptides. It consists of a membrane-bound histidine kinase, LytS, which belongs to the family of multiple transmembrane-spanning domains receptors, and a response regulator, LytR, which belongs to the novel family of non-helix-turn-helix DNA-binding domain proteins. LytR regulates the expression of
cidABC and
lrgAB operons, the gene products of which are involved in programmed cell death and lysis.
In
vivo studies have demonstrated involvement of two overlapping regulatory networks in regulating the
lrgAB operon, both depending on LytR. One regulatory network responds to glucose metabolism and the other responds to changes in the cell membrane potential. Herein, we show that LytS has autokinase activity and can catalyze a fast phosphotransfer reaction, with 50% of its phosphoryl group lost within 1 minute of incubation with LytR. LytS has also phosphatase activity. Notably, LytR undergoes phosphorylation by acetyl phosphate at a rate that is 2-fold faster than the phosphorylation by LytS. This observation is significant in lieu of the
in vivo observations that regulation of the
lrgAB operon is LytR-dependent in the presence of excess glucose in the medium. The latter condition does not lead to perturbation of the cell membrane potential but rather to the accumulation of acetate in the cell. Our study provides insights into the molecular basis for regulation of
lrgAB in a LytR-dependent manner under conditions that do not involve sensing by LytS. |
---|---|
ISSN: | 2046-1402 2046-1402 |
DOI: | 10.12688/f1000research.6213.2 |