Generalizations of the Kantorovich and Wielandt Inequalities with Applications to Statistics

By utilizing the properties of positive definite matrices, mathematical expectations, and positive linear functionals in matrix space, the Kantorovich inequality and Wielandt inequality for positive definite matrices and random variables are obtained. Some novel Kantorovich type inequalities pertain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-09, Vol.12 (18), p.2860
Hauptverfasser: Zhang, Yunzhi, Guo, Xiaotian, Liu, Jianzhong, Chen, Xueping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By utilizing the properties of positive definite matrices, mathematical expectations, and positive linear functionals in matrix space, the Kantorovich inequality and Wielandt inequality for positive definite matrices and random variables are obtained. Some novel Kantorovich type inequalities pertaining to matrix ordinary products, Hadamard products, and mathematical expectations of random variables are provided. Furthermore, several interesting unified and generalized forms of the Wielandt inequality for positive definite matrices are also studied. These derived inequalities are then exploited to establish an inequality regarding various correlation coefficients and study some applications in the relative efficiency of parameter estimation of linear statistical models.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12182860