Acidic fluids in the Earth’s lower crust

Fluid flux through Earth’s surface and its interior causes geochemical cycling of elements in the Earth. Quantification of such process needs accurate knowledge about the composition and properties of the fluids. Knowledge about the fluids in Earth’s interior is scarce due to limitations in both exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-10, Vol.11 (1), p.21146-21146, Article 21146
Hauptverfasser: Samuel, Vinod O., Santosh, M., Jang, Yirang, Kwon, Sanghoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fluid flux through Earth’s surface and its interior causes geochemical cycling of elements in the Earth. Quantification of such process needs accurate knowledge about the composition and properties of the fluids. Knowledge about the fluids in Earth’s interior is scarce due to limitations in both experimental methods and thermodynamic modeling in high/ultrahigh pressure–temperature conditions. In this study, we present halogen (Cl, F) measurements in apatite grains from the mafic (metagabbro), and felsic (two-pyroxene granulite, charnockite, hornblende-biotite gneiss) rocks preserved in the Nilgiri Block, southern India. Previous experiments show that it is difficult to incorporate Cl in apatite compared to F at high pressure and temperature conditions. Based on regional trends in Cl and F content in apatite (with highest Cl content 2.95 wt%), we suggest the presence of acidic C–O–H fluids in the lower crust (~20–40 km deep) during the high-grade metamorphism of these rocks. These fluids are capable of causing extreme chemical alterations of minerals, especially refractory ones. They also have significant potential for mass transfer, causing extensive geochemical variations on a regional scale and altering the chemical and isotope records of rocks formed in the early Earth. Our findings have important relevance in understanding speciation triggered by acidic fluids in the lower crust, as well as the role of fluids in deep Earth processes.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-00719-3