Normalized solutions for a coupled fractional Schrödinger system in low dimensions
We consider the following coupled fractional Schrödinger system: { ( − Δ ) s u + λ 1 u = μ 1 | u | 2 p − 2 u + β | v | p | u | p − 2 u , ( − Δ ) s v + λ 2 v = μ 2 | v | 2 p − 2 v + β | u | p | v | p − 2 v in R N , with 0 < s < 1 , 2 s < N ≤ 4 s and 1 + 2 s N < p < N N − 2 s , under t...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2020-10, Vol.2020 (1), p.1-29, Article 166 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the following coupled fractional Schrödinger system:
{
(
−
Δ
)
s
u
+
λ
1
u
=
μ
1
|
u
|
2
p
−
2
u
+
β
|
v
|
p
|
u
|
p
−
2
u
,
(
−
Δ
)
s
v
+
λ
2
v
=
μ
2
|
v
|
2
p
−
2
v
+
β
|
u
|
p
|
v
|
p
−
2
v
in
R
N
,
with
0
<
s
<
1
,
2
s
<
N
≤
4
s
and
1
+
2
s
N
<
p
<
N
N
−
2
s
, under the following constraint:
∫
R
N
|
u
|
2
d
x
=
a
1
2
and
∫
R
N
|
v
|
2
d
x
=
a
2
2
.
Assuming that the parameters
μ
1
,
μ
2
,
a
1
,
a
2
are fixed quantities, we prove the existence of normalized solution for different ranges of the coupling parameter
β
>
0
. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-020-01463-9 |