Carbon Fibers Encapsulated with Nano-Copper: A Core‒Shell Structured Composite for Antibacterial and Electromagnetic Interference Shielding Applications

A facile and scalable two-step method (including pyrolysis and magnetron sputtering) is created to prepare a core‒shell structured composite consisting of cotton-derived carbon fibers (CDCFs) and nano-copper. Excellent hydrophobicity (water contact angle = 144°) and outstanding antibacterial activit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2019-03, Vol.9 (3), p.460
Hauptverfasser: Jiao, Yue, Wan, Caichao, Zhang, Wenbo, Bao, Wenhui, Li, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A facile and scalable two-step method (including pyrolysis and magnetron sputtering) is created to prepare a core‒shell structured composite consisting of cotton-derived carbon fibers (CDCFs) and nano-copper. Excellent hydrophobicity (water contact angle = 144°) and outstanding antibacterial activity against and (antibacterial ratios of >92%) are achieved for the composite owing to the composition transformation from cellulose to carbon and nano-size effects as well as strong oxidizing ability of oxygen reactive radicals from interactions of nano-Cu with sulfhydryl groups of enzymes. Moreover, the core‒shell material with high electrical conductivity induces the interfacial polarization loss and conduction loss, contributing to a high electromagnetic interference (EMI) shielding effectiveness of 29.3 dB. Consequently, this flexible and multi-purpose hybrid of nano-copper/CDCFs may be useful for numerous applications like self-cleaning wall cladding, EMI shielding layer and antibacterial products.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano9030460