Photocatalytic and antioxidant potential of silver nanoparticles biosynthesized using Artemisia stelleriana leaf extracts
The antioxidant and photocatalytic activity of Artemisia stelleriana-based silver nanoparticles (AS-AgNPs) was investigated in this study. Microscopic, X-ray diffraction and spectroscopic studies were used to characterize the synthesized AS-AgNPs. UV–visible spectrophotometric examination revealed a...
Gespeichert in:
Veröffentlicht in: | Water practice and technology 2023-11, Vol.18 (11), p.2664-2674 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The antioxidant and photocatalytic activity of Artemisia stelleriana-based silver nanoparticles (AS-AgNPs) was investigated in this study. Microscopic, X-ray diffraction and spectroscopic studies were used to characterize the synthesized AS-AgNPs. UV–visible spectrophotometric examination revealed a peak at 425 nm. The phytocompounds involved in the transformation of silver ions into AS-AgNPs were confirmed using Fourier-transform infrared spectroscopy analysis. The crystalline nature of the AS-AgNPs was verified using the X-ray powder diffraction technique. Spherical-shaped AS-AgNPs with a size of 22.7 nm were proved using field emission scanning electron microscopy. The AS-AgNPs were top-notch photocatalysts for the degradation of Reactive Blue-222A (RB-222A) and Reactive Blue-220 (RB-220) dyes. After 80 min of UV light exposure, AS-AgNPs degraded RB-222A and RB-220 dyes by 94.6 and 90.8%, respectively. The phytotoxicity investigation in Vigna radiata and Artemia salina indicated that the hazardous dye can be degraded into innocuous chemicals by AS-AgNPs. The results suggest that AS-AgNPs are an excellent antioxidant and photocatalyst for the degradation of synthetic dyes. |
---|---|
ISSN: | 1751-231X 1751-231X |
DOI: | 10.2166/wpt.2023.176 |