Normal Workflow and Key Strategies for Data Cleaning Toward Real-World Data: Viewpoint
With the rapid development of science, technology, and engineering, large amounts of data have been generated in many fields in the past 20 years. In the process of medical research, data are constantly generated, and large amounts of real-world data form a “data disaster.” Effective data analysis a...
Gespeichert in:
Veröffentlicht in: | Interactive journal of medical research 2023-09, Vol.12, p.e44310-e44310 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the rapid development of science, technology, and engineering, large amounts of data have been generated in many fields in the past 20 years. In the process of medical research, data are constantly generated, and large amounts of real-world data form a “data disaster.” Effective data analysis and mining are based on data availability and high data quality. The premise of high data quality is the need to clean the data. Data cleaning is the process of detecting and correcting “dirty data,” which is the basis of data analysis and management. Moreover, data cleaning is a common technology for improving data quality. However, the current literature on real-world research provides little guidance on how to efficiently and ethically set up and perform data cleaning. To address this issue, we proposed a data cleaning framework for real-world research, focusing on the 3 most common types of dirty data (duplicate, missing, and outlier data), and a normal workflow for data cleaning to serve as a reference for the application of such technologies in future studies. We also provided relevant suggestions for common problems in data cleaning. |
---|---|
ISSN: | 1929-073X 1929-073X |
DOI: | 10.2196/44310 |