Post-Fracture Production Prediction with Production Segmentation and Well Logging: Harnessing Pipelines and Hyperparameter Tuning with GridSearchCV

As the petroleum industry increasingly exploits unconventional reservoirs with low permeability and porosity, accurate predictions of post-fracture production are becoming critical for investment decisions, energy policy development, and environmental impact assessments. However, despite extensive r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-05, Vol.14 (10), p.3954
Hauptverfasser: Sun, Yongtao, Wang, Jinwei, Wang, Tao, Li, Jingsong, Wei, Zhipeng, Fan, Aibin, Liu, Huisheng, Chen, Shoucun, Zhang, Zhuo, Chen, Yuanyuan, Huang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the petroleum industry increasingly exploits unconventional reservoirs with low permeability and porosity, accurate predictions of post-fracture production are becoming critical for investment decisions, energy policy development, and environmental impact assessments. However, despite extensive research, accurately forecasting post-fracture production using well-log data continues to be a complex challenge. This study introduces a new method of data volume expansion, which is to subdivide the gas production of each well on the first day according to the depth of logging data, and to rely on the correlation model between petrophysical parameters and gas production to accurately combine the gas production data while matching the accuracy of the well-log data. Twelve pipelines were constructed utilizing a range of techniques to fit the regression relationship between logging parameters and post-fracture gas production These included data preprocessing methods (StandardScaler and RobustScaler), feature extraction approaches (PCA and PolynomialFeatures), and advanced machine learning models (XGBoost, Random Forest, and neural networks). Hyperparameter optimization was executed via GridSearchCV. To assess the efficacy of diverse models, metrics including the coefficient of determination (R2), standard deviation (SD), Pearson correlation coefficient (PCC), mean absolute error (MAE), mean squared error (MSE), and root-mean-square error (RMSE) were invoked. Among the several pipelines explored, the PFS-NN exhibited excellent predictive capability in specific reservoir contexts. In essence, integrating machine learning with logging parameters can be used to effectively assess reservoir productivity at multi-meter formation scales. This strategy not only mitigates uncertainties endemic to reservoir exploration but also equips petroleum engineers with the ability to monitor reservoir dynamics, thereby facilitating reservoir development. Additionally, this approach provides reservoir engineers with an efficient means of reservoir performance oversight.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14103954