Interior Bubbling Solutions for an Elliptic Equation with Slightly Subcritical Nonlinearity
In this paper, we considered the Neumann elliptic equation (Pε): −Δu+K(x)u=u(n+2)/(n−2)−ε, u>0 in Ω, ∂u/∂ν=0 on ∂Ω, where Ω is a smooth bounded domain in Rn, n≥6, ε is a small positive real and K is a smooth positive function on Ω¯. Using refined asymptotic estimates of the gradient of the associ...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2023-03, Vol.11 (6), p.1471 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we considered the Neumann elliptic equation (Pε): −Δu+K(x)u=u(n+2)/(n−2)−ε, u>0 in Ω, ∂u/∂ν=0 on ∂Ω, where Ω is a smooth bounded domain in Rn, n≥6, ε is a small positive real and K is a smooth positive function on Ω¯. Using refined asymptotic estimates of the gradient of the associated Euler–Lagrange functional, we constructed simple and non-simple interior bubbling solutions of (Pε) which allowed us to prove multiplicity results for (Pε) provided that ε is small. The existence of non-simple interior bubbling solutions is a new phenomenon for the positive solutions of subcritical problems. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11061471 |