Covalent Grafting of the RGD-Peptide onto Polyetheretherketone Surfaces via Schiff Base Formation
In recent years, the synthetic polymer polyetheretherketone (PEEK) has increasingly been used in a number of orthopedic implementations, due to its excellent mechanical properties, bioinertness, and chemical resistance. For in vivo applications, the surface of PEEK, which does not naturally support...
Gespeichert in:
Veröffentlicht in: | TheScientificWorld 2013-01, Vol.2013 (2013), p.1-5 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, the synthetic polymer polyetheretherketone (PEEK) has increasingly been used in a number of orthopedic implementations, due to its excellent mechanical properties, bioinertness, and chemical resistance. For in vivo applications, the surface of PEEK, which does not naturally support cell adhesion, has to be modified to improve tissue integration. In the present work we demonstrate a novel wet-chemical modification of PEEK to modify the surface, enabling the covalent grafting of the cell-adhesive RGD-peptide. Modification of the polymer surface was achieved via Schiff base formation using an aliphatic diamine and subsequent crosslinker-mediated immobilization of the peptide. In cell culture experiments with primary osteoblasts it was shown that the RGD-modified PEEK not only significantly promoted cellular adhesion but also strongly enhanced the proliferation of osteoblasts on the modified polymer surface. |
---|---|
ISSN: | 2356-6140 1537-744X 1537-744X |
DOI: | 10.1155/2013/616535 |