Real-Time Artifact Removal System for Surface EMG Processing During Ten-Fold Frequency Electrical Stimulation

In this paper, three easily implemented hardware algorithms, including the adaptive prediction error filter based on the Gram-Schmidt algorithm (GS-APEF), the least mean square adaptive filter and the comb filter, are extensively investigated for artifact denoising on a constructed semi-simulated da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.68320-68331
Hauptverfasser: Wang, Hai-Peng, Bi, Zheng-Yang, Fan, Wen-Jie, Zhou, Yi-Xin, Zhou, Yu-Xuan, Li, Fei, Wang, Keping, Lu, Xiao-Ying, Wang, Zhi-Gong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, three easily implemented hardware algorithms, including the adaptive prediction error filter based on the Gram-Schmidt algorithm (GS-APEF), the least mean square adaptive filter and the comb filter, are extensively investigated for artifact denoising on a constructed semi-simulated database with varied ten-fold frequency stimulation. By implementing the GS-APEF in the field-programmable gate array (FPGA) and using the edge noise mitigating technique, a stimulation artifact denoising system is designed to realize real-time stimulation artifact removal under varied ten-fold frequency functional electrical stimulation. Good performance of the artifact denoising is demonstrated in proof-of-concept experiments on able-bodied subjects with a mean correlation coefficient between the root mean square profile of denoised surface electromyography and volitional force of 0.94, verifying the validity of the proposed prototype.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3077644