Real-Time Artifact Removal System for Surface EMG Processing During Ten-Fold Frequency Electrical Stimulation
In this paper, three easily implemented hardware algorithms, including the adaptive prediction error filter based on the Gram-Schmidt algorithm (GS-APEF), the least mean square adaptive filter and the comb filter, are extensively investigated for artifact denoising on a constructed semi-simulated da...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.68320-68331 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, three easily implemented hardware algorithms, including the adaptive prediction error filter based on the Gram-Schmidt algorithm (GS-APEF), the least mean square adaptive filter and the comb filter, are extensively investigated for artifact denoising on a constructed semi-simulated database with varied ten-fold frequency stimulation. By implementing the GS-APEF in the field-programmable gate array (FPGA) and using the edge noise mitigating technique, a stimulation artifact denoising system is designed to realize real-time stimulation artifact removal under varied ten-fold frequency functional electrical stimulation. Good performance of the artifact denoising is demonstrated in proof-of-concept experiments on able-bodied subjects with a mean correlation coefficient between the root mean square profile of denoised surface electromyography and volitional force of 0.94, verifying the validity of the proposed prototype. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3077644 |