Research on the Transmission of Stresses by Roof Cutting near Gob Rocks

Pressure relief for roadways retained by roof cutting is essentially caused by stress transfer. In this paper, the stress transfer mechanism of 16011 tail entry with roof cutting in Zhaogu No.1 coal mine is studied from the following two aspects: the change of the tail entry surrounding the rock str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2021-03, Vol.14 (5), p.1237
Hauptverfasser: Guo, Zhibiao, Wang, Haohao, Ma, Zimin, Wang, Pengfei, Kuai, Xiaohui, Zhang, Xianzhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pressure relief for roadways retained by roof cutting is essentially caused by stress transfer. In this paper, the stress transfer mechanism of 16011 tail entry with roof cutting in Zhaogu No.1 coal mine is studied from the following two aspects: the change of the tail entry surrounding the rock structure and the interaction between the roadway surrounding rock and supporting structures. It is found by numerical simulation that roof cutting can significantly reduce the magnitude of roadway roof stress, transferring the concentrated stress induced by excavation and mining away from the roadway, and forming an obvious triangle pressure relief area in front of the working face. In the early stage after mining, most of the overburden load is transferred downward through the immediate roof of the roadway. With the movement of overlying strata, the stress, initially transferred to the immediate roof strata, is gradually transferred to the gob, and the calculation formula and influence factors of the transferred stress are derived. In addition, through the establishment of the mechanical model and theoretical calculation of the key rock block of the main roof, the roadside support resistance required to ensure the stability of the main roof block is determined. The field monitoring shows that the lateral pressure coefficient of the roadside caved rocks is 0.36 and the constant resistance and large deformation anchor cable (CRLDAC) and the roadway temporary support play roles of conduction and control in the process of stress transfer, and effectively ensure the stability of surrounding rock during the service life of the retained gob-side entry by roof cutting (RGERC).
ISSN:1996-1073
1996-1073
DOI:10.3390/en14051237