Efficient Reinforcement Learning for 3D Jumping Monopods

We consider a complex control problem: making a monopod accurately reach a target with a single jump. The monopod can jump in any direction at different elevations of the terrain. This is a paradigm for a much larger class of problems, which are extremely challenging and computationally expensive to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-08, Vol.24 (15), p.4981
Hauptverfasser: Bussola, Riccardo, Focchi, Michele, Del Prete, Andrea, Fontanelli, Daniele, Palopoli, Luigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a complex control problem: making a monopod accurately reach a target with a single jump. The monopod can jump in any direction at different elevations of the terrain. This is a paradigm for a much larger class of problems, which are extremely challenging and computationally expensive to solve using standard optimization-based techniques. Reinforcement learning (RL) is an interesting alternative, but an end-to-end approach in which the controller must learn everything from scratch can be non-trivial with a sparse-reward task like jumping. Our solution is to guide the learning process within an RL framework leveraging nature-inspired heuristic knowledge. This expedient brings widespread benefits, such as a drastic reduction of learning time, and the ability to learn and compensate for possible errors in the low-level execution of the motion. Our simulation results reveal a clear advantage of our solution against both optimization-based and end-to-end RL approaches.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24154981