A Feature Selection Method for Multi-Label Text Based on Feature Importance

Multi-label text classification refers to a text divided into multiple categories simultaneously, which corresponds to a text associated with multiple topics in the real world. The feature space generated by text data has the characteristics of high dimensionality and sparsity. Feature selection is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2019-02, Vol.9 (4), p.665
Hauptverfasser: Zhang, Lu, Duan, Qingling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi-label text classification refers to a text divided into multiple categories simultaneously, which corresponds to a text associated with multiple topics in the real world. The feature space generated by text data has the characteristics of high dimensionality and sparsity. Feature selection is an efficient technology that removes useless and redundant features, reduces the dimension of the feature space, and avoids dimension disaster. A feature selection method for multi-label text based on feature importance is proposed in this paper. Firstly, multi-label texts are transformed into single-label texts using the label assignment method. Secondly, the importance of each feature is calculated using the method based on Category Contribution (CC). Finally, features with higher importance are selected to construct the feature space. In the proposed method, the feature importance is calculated from the perspective of the category, which ensures the selected features have strong category discrimination ability. Specifically, the contributions of the features to each category from two aspects of inter-category and intra-category are calculated, then the importance of the features is obtained with the combination of them. The proposed method is tested on six public data sets and the experimental results are good, which demonstrates the effectiveness of the proposed method.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9040665