Effect of the depth base along the vertical on the electrical parameters of a vertical parallel silicon solar cell in open and short circuit

This article presented a modeling study of effect of the depth base initiating on vertical parallel silicon solar cell’s photovoltaic conversion efficiency. After the resolution of the continuity equation of excess minority carriers, we calculated the electrical parameters such as the photocurrent d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Results in physics 2018-03, Vol.8, p.257-261
Hauptverfasser: Sahin, Gokhan, Kerimli, Genber
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presented a modeling study of effect of the depth base initiating on vertical parallel silicon solar cell’s photovoltaic conversion efficiency. After the resolution of the continuity equation of excess minority carriers, we calculated the electrical parameters such as the photocurrent density, the photovoltage, series resistance and shunt resistances, diffusion capacitance, electric power, fill factor and the photovoltaic conversion efficiency. We determined the maximum electric power, the operating point of the solar cell and photovoltaic conversion efficiency according to the depth z in the base. We showed that the photocurrent density decreases with the depth z. The photovoltage decreased when the depth base increases. Series and shunt resistances were deduced from electrical model and were influenced and the applied the depth base. The capacity decreased with the depth z of the base. We had studied the influence of the variation of the depth z on the electrical parameters in the base.
ISSN:2211-3797
2211-3797
DOI:10.1016/j.rinp.2017.12.021