Single-Layer GaInSe3: Promising Water-Splitting Photocatalyst with Solar Conversion Efficiency over 30% from Theoretical Calculations

Hydrogen energy from solar water-splitting is known as an ideal method with which to address the energy crisis and global environmental pollution. Herein, the first-principles calculations are carried out to study the photocatalytic water-splitting performance of single-layer GaInSe3 under biaxial s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2023-09, Vol.28 (19), p.6858
Hauptverfasser: Liu, Li-Li, Tang, Ru-Fei, Li, De-Fen, Tang, Ming-Xia, Mu, Bing-Zhong, Hu, Zheng-Quan, Wang, Shi-Fa, Wen, Yu-Feng, Wu, Xiao-Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrogen energy from solar water-splitting is known as an ideal method with which to address the energy crisis and global environmental pollution. Herein, the first-principles calculations are carried out to study the photocatalytic water-splitting performance of single-layer GaInSe3 under biaxial strains from −2% to +2%. Calculations reveal that single-layer GaInSe3 under various biaxial strains has electronic bandgaps ranging from 1.11 to 1.28 eV under biaxial strain from −2% to +2%, as well as a completely separated valence band maximum and conduction band minimum. Meanwhile, the appropriate band edges for water-splitting and visible optical absorption up to ~3 × 105 cm−1 are obtained under biaxial strains from −2% to 0%. More impressively, the solar conversion efficiency of single-layer GaInSe3 under biaxial strains from −2% to 0% reaches over 30%. The OER of unstrained single-layer GaInSe3 can proceed without co-catalysts. These demonstrate that single-layer GaInSe3 is a viable material for solar water-splitting.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28196858