Synergistic Effect of Aluminum Nitride and Carbon Nanotube-Reinforced Silicon Rubber Nanocomposites
Constructing a synergistic effect with different structural fillers is an important strategy for improving the comprehensive properties of polymeric composites. To improve the comprehensive properties of two-component additive liquid silicon rubber (SR) materials used in electronics packaging, the s...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2024-06, Vol.29 (12), p.2864 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Constructing a synergistic effect with different structural fillers is an important strategy for improving the comprehensive properties of polymeric composites. To improve the comprehensive properties of two-component additive liquid silicon rubber (SR) materials used in electronics packaging, the synergistic effect of granular aluminum nitride (AlN) and tubular carbon nanotube (CNT)-reinforced SR nanocomposites was investigated. AlN/CNT/SR composites with different AlN/CNT ratios were fabricated with two-component additive liquid SR via the thermal curing technique, and the influence of AlN/CNT hybrid fillers on the hardness, strength, elongation at break, surface resistivity, thermal conductivity, and thermal decomposition was investigated in detail. With the incorporation of AlN/CNT hybrid fillers, the comprehensive properties of the obtained AlN/CNT/SR composites are better than those of the AlN/SR and CNT/SR composites. The synergistic thermal conductive mechanism of AlN/CNT hybrid fillers was proposed and demonstrated with the fractural surface morphology of the obtained composites. The obtained AlN/CNT/SR composites show promising applications in electronic packaging, where necessary mechanical strength, electrical insulating, thermal conductivity, and thermal stable materials are needed. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules29122864 |