Atomically thin quantum light-emitting diodes

Transition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2016-09, Vol.7 (1), p.12978-12978, Article 12978
Hauptverfasser: Palacios-Berraquero, Carmen, Barbone, Matteo, Kara, Dhiren M., Chen, Xiaolong, Goykhman, Ilya, Yoon, Duhee, Ott, Anna K., Beitner, Jan, Watanabe, Kenji, Taniguchi, Takashi, Ferrari, Andrea C., Atatüre, Mete
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emitting diode structure comprising single-layer graphene, thin hexagonal boron nitride and transition metal dichalcogenide mono- and bi-layers. Photon correlation measurements are used to confirm the single-photon nature of the spectrally sharp emission. These results present the transition metal dichalcogenide family as a platform for hybrid, broadband, atomically precise quantum photonics devices. Atomically thin transition metal dichalcogenides hold promise as scalable single-photon sources. Here, the authors demonstrate all-electrical, single-photon generation in tungsten disulphide and diselenide, achieving charge injection into the layers, containing quantum emitters.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms12978