The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups

Compounds with the ability to scavenge reactive oxygen species (ROS) and inhibit tyrosinase may be useful for the treatment and prevention from ROS-related diseases. The number and location of phenolic hydroxyl of the flavonoids will significantly influence the inhibition of tyrosinase activity. Phe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese medicine 2018-10, Vol.13 (1), p.51-51, Article 51
Hauptverfasser: Zuo, Ai-Ren, Dong, Huan-Huan, Yu, Yan-Ying, Shu, Qing-Long, Zheng, Li-Xiang, Yu, Xiong-Ying, Cao, Shu-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Compounds with the ability to scavenge reactive oxygen species (ROS) and inhibit tyrosinase may be useful for the treatment and prevention from ROS-related diseases. The number and location of phenolic hydroxyl of the flavonoids will significantly influence the inhibition of tyrosinase activity. Phenolic hydroxyl is indispensable to the antioxidant activity of flavonoids. Isoeugenol, shikonin, baicalein, rosmarinic acid, and dihydromyricetin have respectively one, two, three, four, or five phenolic hydroxyls. The different molecular structures with the similar structure to l-3,4-dihydroxyphenylalanine (l-DOPA) were expected to the different antityrosinase and antioxidant activities. This investigation tested the antityrosinase activity, the inhibition constant, and inhibition type of isoeugenol, shikonin, baicalein, rosmarinic acid, and dihydromyricetin. Molecular docking was examined by the Discovery Studio 2.5 (CDOCKER Dock, Dassault Systemes BIOVIA, USA). This experiment also examined the antioxidant effects of the five compounds on supercoiled pBR322 plasmid DNA, lipid peroxidation in rat liver mitochondria in vitro, and DPPH, ABTS, hydroxyl, or superoxide free radical scavenging activity in vitro. The compounds exhibited good antityrosinase activities. Molecular docking results implied that the compounds could interact with the amino acid residues in the active site center of antityrosinase. These compounds also exhibited antioxidant effects on DPPH, ABTS, hydroxyl, or superoxide free radical scavenging activity in vitro, lipid peroxidation in rat liver mitochondria induced by Fe /vitamin C system in vitro, and supercoiled pBR322 plasmid DNA. The activity order is isoeugenol 
ISSN:1749-8546
1749-8546
DOI:10.1186/s13020-018-0206-9