General approach to surface-accessible plasmonic Pickering emulsions for SERS sensing and interfacial catalysis

Pickering emulsions represent an important class of functional materials with potential applications in sustainability and healthcare. Currently, the synthesis of Pickering emulsions relies heavily on the use of strongly adsorbing molecular modifiers to tune the surface chemistry of the nanoparticle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-03, Vol.14 (1), p.1392-1392, Article 1392
Hauptverfasser: Zhang, Yingrui, Ye, Ziwei, Li, Chunchun, Chen, Qinglu, Aljuhani, Wafaa, Huang, Yiming, Xu, Xin, Wu, Chunfei, Bell, Steven E. J., Xu, Yikai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pickering emulsions represent an important class of functional materials with potential applications in sustainability and healthcare. Currently, the synthesis of Pickering emulsions relies heavily on the use of strongly adsorbing molecular modifiers to tune the surface chemistry of the nanoparticle constituents. This approach is inconvenient and potentially a dead-end for many applications since the adsorbed modifiers prevent interactions between the functional nanosurface and its surroundings. Here, we demonstrate a general modifier-free approach to construct Pickering emulsions by using a combination of stabilizer particles, which stabilize the emulsion droplet, and a second population of unmodified functional particles that sit alongside the stabilizers at the interface. Freeing Pickering emulsions from chemical modifiers unlocks their potential across a range of applications including plasmonic sensing and interfacial catalysis that have previously been challenging to achieve. More broadly, this strategy provides an approach to the development of surface-accessible nanomaterials with enhanced and/or additional properties from a wide range of nano-building blocks including organic nanocrystals, carbonaceous materials, metals and oxides. The preparation of Pickering emulsions from nanoparticles commonly requires modification of the particles’ surface chemistry. Here, the authors demonstrate a chemical modifier-free approach for the preparation of long-term stable Pickering emulsions for SERS sensing and catalytic applications.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-37001-1