Electrically controllable diffractive optical elements fabricated by direct laser writing on a carbon nanotube network film

A randomly connected single-walled carbon nanotube (CNT) network film is suggested as an optically homogenous thin film to implement a tunable diffractive optical element with a subwavelength thickness. A Fresnel zone plate (FZP) as a thin-film lens is successfully realized by mask-free direct laser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanophotonics (Berlin, Germany) Germany), 2023-01, Vol.12 (1), p.71-79
Hauptverfasser: Min, Taeyol, Yim, Jong Hyuk, Park, Sungmin, Ha, Seongju, Lee, Soonil, Yeom, Dong-Il
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A randomly connected single-walled carbon nanotube (CNT) network film is suggested as an optically homogenous thin film to implement a tunable diffractive optical element with a subwavelength thickness. A Fresnel zone plate (FZP) as a thin-film lens is successfully realized by mask-free direct laser writing onto the CNT network film with a thickness of 450 nm. The fabricated FZP exhibits an intense three-dimensional focus having lateral and axial focal sizes of 0.95 and 7.10 , respectively, at the wavelength of 1550 nm. Furthermore, we show that the intensities at focal points of the first and second diffraction orders can be significantly modulated by 72% and 40% through ion-gel gating between +1.8 V and −1.8 V. These results may offer the potential for electro-optic tunability in multifocal diffraction flat optics and the like.
ISSN:2192-8614
2192-8606
2192-8614
DOI:10.1515/nanoph-2022-0518