Potentiometric Phosphate Ion Sensor Based on Electrochemical Modified Tungsten Electrode

Determination of phosphate ions in aqueous solutions attracts a great deal of interest in the areas of environment, medicine, and agriculture. As phosphoric acid is a poly basic acid, the different forms of existence at different pH result in direct determination facing a big challenge. Herein, we r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2021-06, Vol.6 (21), p.13795-13801
Hauptverfasser: Xu, Kebin, Li, Ying, Li, Min
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Determination of phosphate ions in aqueous solutions attracts a great deal of interest in the areas of environment, medicine, and agriculture. As phosphoric acid is a poly basic acid, the different forms of existence at different pH result in direct determination facing a big challenge. Herein, we reported a potentiometric phosphate ion sensor based on a surface-modified tungsten electrode. Pure tungsten was electrodeposited at a constant potential of 0.2 V versus Ag|AgCl in Na2HPO4. WO3 and H3O40PW12·xH2O were electrodeposited on the surface of the tungsten electrode. The modified tungsten electrode was used as a working electrode in a two-electrode system to detect the concentration of phosphate ions in aqueous solutions. The detection limit of the modified tungsten electrode for phosphate ions is 10–6 M from pH 7 to pH 8 and 10–5 M from pH 9 to pH 10. It has good selectivity to other common anions. The long-term monitoring experiment showed that the potential fluctuation was less than ±3 mV in 24 h. Compared to conventional determination methods, the current phosphate ion sensor showed a close value in a real sample. The mechanism of phosphate ion response was investigated in detail. This sensor possesses advantages of simple manufacture, low cost, a wide pH range for detecting, and good selectivity.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.1c00195