Estimation of Generalized Gompertz Distribution Parameters under Ranked-Set Sampling
This paper studies estimation of the parameters of the generalized Gompertz distribution based on ranked-set sample (RSS). Maximum likelihood (ML) and Bayesian approaches are considered. Approximate confidence intervals for the unknown parameters are constructed using both the normal approximation t...
Gespeichert in:
Veröffentlicht in: | Journal of probability and statistics 2020-01, Vol.2020 (2020), p.1-14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies estimation of the parameters of the generalized Gompertz distribution based on ranked-set sample (RSS). Maximum likelihood (ML) and Bayesian approaches are considered. Approximate confidence intervals for the unknown parameters are constructed using both the normal approximation to the asymptotic distribution of the ML estimators and bootstrapping methods. Bayes estimates and credible intervals of the unknown parameters are obtained using differential evolution Markov chain Monte Carlo and Lindley’s methods. The proposed methods are compared via Monte Carlo simulations studies and an example employing real data. The performance of both ML and Bayes estimates is improved under RSS compared with simple random sample (SRS) regardless of the sample size. Bayes estimates outperform the ML estimates for small samples, while it is the other way around for moderate and large samples. |
---|---|
ISSN: | 1687-952X 1687-9538 |
DOI: | 10.1155/2020/7362657 |