Deep Learning Soft-Decision GNSS Multipath Detection and Mitigation

A technique is proposed to detect the presence of the multipath effect in Global Navigation Satellite Signal (GNSS) signals using a convolutional neural network (CNN) as the building block. The network is trained and validated, for a wide range of C/N0 values, with a realistic dataset constituted by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-07, Vol.24 (14), p.4663
Hauptverfasser: Nunes, Fernando, Sousa, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A technique is proposed to detect the presence of the multipath effect in Global Navigation Satellite Signal (GNSS) signals using a convolutional neural network (CNN) as the building block. The network is trained and validated, for a wide range of C/N0 values, with a realistic dataset constituted by the synthetic noisy outputs of a 2D grid of correlators associated with different Doppler frequencies and code delays (time-domain dataset). Multipath-disturbed signals are generated in agreement with the various scenarios encompassed by the adopted multipath model. It was found that pre-processing the outputs of the correlators grid with the two-dimensional Discrete Fourier Transform (frequency-domain dataset) enables the CNN to improve the accuracy relative to the time-domain dataset. Depending on the kind of CNN outputs, two strategies can then be devised to solve the equation of navigation: either remove the disturbed signal from the equation (hard decision) or process the pseudoranges with a weighted least-squares algorithm, where the entries of the weighting matrix are computed using the analog outputs of the neural network (soft decision).
ISSN:1424-8220
1424-8220
DOI:10.3390/s24144663