Dental Stem Cell-Derived Secretome/Conditioned Medium: The Future for Regenerative Therapeutic Applications

Regenerative medicine literature has proposed mesenchymal stem/progenitor cell- (MSC-) mediated therapeutic approaches for their great potential in managing various diseases and tissue defects. Dental MSCs represent promising alternatives to nondental MSCs, owing to their ease of harvesting with min...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cells international 2020, Vol.2020 (2020), p.1-29
Hauptverfasser: Fawzy El-Sayed, Karim M., Sadek, Khadiga M., El-Rashidy, Aiah A., Abbass, Marwa M. S., Rady, Dina, Radwan, Israa Ahmed, El Moshy, Sara, Dörfer, Christof E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Regenerative medicine literature has proposed mesenchymal stem/progenitor cell- (MSC-) mediated therapeutic approaches for their great potential in managing various diseases and tissue defects. Dental MSCs represent promising alternatives to nondental MSCs, owing to their ease of harvesting with minimally invasive procedures. Their mechanism of action has been attributed to their cell-to-cell contacts as well as to the paracrine effect of their secreted factors, namely, secretome. In this context, dental MSC-derived secretome/conditioned medium could represent a unique cell-free regenerative and therapeutic approach, with fascinating advantages over parent cells. This article reviews the application of different populations of dental MSC secretome/conditioned medium in in vitro and in vivo animal models, highlights their significant implementation in treating different tissue’ diseases, and clarifies the significant bioactive molecules involved in their regenerative potential. The analysis of these recent studies clearly indicate that dental MSCs’ secretome/conditioned medium could be effective in treating neural injuries, for dental tissue regeneration, in repairing bone defects, and in managing cardiovascular diseases, diabetes mellitus, hepatic regeneration, and skin injuries, through regulating anti-inflammatory, antiapoptotic, angiogenic, osteogenic, and neurogenic mediators.
ISSN:1687-966X
1687-9678
1687-9678
DOI:10.1155/2020/7593402