Preclinical Evaluation of an Imidazole-Linked Heterocycle for Alzheimer’s Disease

Humanity is facing a vast prevalence of neurodegenerative diseases, with Alzheimer’s disease (AD) being the most dominant, without efficacious drugs, and with only a few therapeutic targets identified. In this scenario, we aim to find molecular entities that modulate imidazoline I2 receptors (I2-IRs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutics 2023-09, Vol.15 (10), p.2381
Hauptverfasser: Bagán, Andrea, Rodriguez-Arévalo, Sergio, Taboada-Jara, Teresa, Griñán-Ferré, Christian, Pallàs, Mercè, Brocos-Mosquera, Iria, Callado, Luis F, Morales-García, José A, Pérez, Belén, Diaz, Caridad, Fernández-Godino, Rosario, Genilloud, Olga, Beljkas, Milan, Oljacic, Slavica, Nikolic, Katarina, Escolano, Carmen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Humanity is facing a vast prevalence of neurodegenerative diseases, with Alzheimer’s disease (AD) being the most dominant, without efficacious drugs, and with only a few therapeutic targets identified. In this scenario, we aim to find molecular entities that modulate imidazoline I2 receptors (I2-IRs) that have been pointed out as relevant targets in AD. In this work, we explored structural modifications of well-established I2-IR ligands, giving access to derivatives with an imidazole-linked heterocycle as a common key feature. We report the synthesis, the affinity in human I2-IRs, the brain penetration capabilities, the in silico ADMET studies, and the three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of this new bunch of I2-IR ligands. Selected compounds showed neuroprotective properties and beneficial effects in an in vitro model of Parkinson’s disease, rescued the human dopaminergic cell line SH-SY5Y from death after treatment with 6-hydroxydopamine, and showed crucial anti-inflammatory effects in a cellular model of neuroinflammation. After a preliminary pharmacokinetic study, we explored the action of our representative 2-(benzo[b]thiophen-2-yl)-1H-imidazole LSL33 in a mouse model of AD (5xFAD). Oral administration of LSL33 at 2 mg/Kg for 4 weeks ameliorated 5XFAD cognitive impairment and synaptic plasticity, as well as reduced neuroinflammation markers. In summary, this new I2-IR ligand that promoted beneficial effects in a well-established AD mouse model should be considered a promising therapeutic strategy for neurodegeneration.
ISSN:1999-4923
1999-4923
DOI:10.3390/pharmaceutics15102381